$0.52 \times 0.34 \times 0.18 \text{ mm}$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,*N*'-Bis(4-pyridylmethylene)benzene-1,4-diamine monohydrate

Qiang Wang,^a Da-Qi Wang^a* and Yu-Ying Sun^b

^aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and ^bAnalytical and Testing Center of Beihua University, People's Republic of China Correspondence e-mail: wdq4869@163.com

Received 3 November 2007; accepted 7 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.066; wR factor = 0.230; data-to-parameter ratio = 13.1.

In the title compound, $C_{18}H_{14}N_4 \cdot H_2O$, the central benzene ring makes dihedral angles of 43.80 (14) and 24.94 (16)° with the two pyridine rings. The water molecule bridges benzene-1,4-diamine molecules *via* $O-H \cdot \cdot \cdot N$ hydrogen bonds, resulting in the formation of linear chains extending along the [201] direction.

Related literature

For general background, see: Yang *et al.* (2000); Mondal *et al.* (2001); Tarafder *et al.* (2002).

Experimental

Crystal data

$C_{18}H_{16}N_4O$	$\alpha = 109.914 \ (3)^{\circ}$
$M_r = 304.35$	$\beta = 94.884 \ (2)^{\circ}$
Triclinic, P1	$\gamma = 102.663 \ (3)^{\circ}$
a = 8.4780 (12) Å	V = 799.6 (2) Å ³
b = 9.2472 (15) Å	Z = 2
c = 11.291 (2) Å	Mo $K\alpha$ radiation

$\mu = 0$	$.08 \text{ mm}^{-1}$
T = 2	98 (2) K

Data collection

Siemens SMART CCD area-	4033 measured reflections
detector diffractometer	2718 independent reflections
Absorption correction: multi-scan	1439 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.038$
$T_{\min} = 0.959, \ T_{\max} = 0.985$	

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.066$ 208 parameters $wR(F^2) = 0.231$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.19$ e Å $^{-3}$ 2718 reflections $\Delta \rho_{min} = -0.24$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$O1 - H1B \cdots N4^{i}$ 0.85 2.20 3.005 (4) 158		$D=\Pi$	$\mathbf{H} \cdots \mathbf{A}$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1 - H1A \cdots N3^n$ 0.85 2.16 2.967 (4) 158	$O1-H1B\cdots N4^{i}$	0.85	2.20	3.005 (4)	158
	$O1-H1A\cdots N3^{ii}$	0.85	2.16	2.967 (4)	158

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x, -y + 1, -z + 2.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge the financial support of the Shandong Province Science Foundation, and the State Key Laboratory of Crystalline Materials, Shandong University, People's Republic of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2345).

References

- Mondal, N., Mitra, S., Gramilich, V., Ghodsi, S. O. & Abdul Malik, K. M. (2001). Polyhedron, 20, 135–141.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997*a*). *SHELXL97* and *SHELXS97*. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tarafder, M. T. H., Khoo, T.-J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). *Polyhedron*, **21**, 2691–2698.
- Yang, Z.-Y., Yang, R.-D., Li, F.-S. & Yu, K.-B. (2000). Polyhedron, 19, 2599–2604.

supplementary materials

Acta Cryst. (2007). E63, o4665 [doi:10.1107/81600536807056711]

N,*N*'-Bis(4-pyridylmethylene)benzene-1,4-diamine monohydrate

Q. Wang, D.-Q. Wang and Y.-Y. Sun

Comment

Schiff bases have been intensively investigated recently owing to their strong coordination capability and diverse biological activities, such as antibacterial, antitumor activities *etc* (Yang *et al.*, 2000; Mondal *et al.*, 2001; Tarafder *et al.*, 2002). In this paper, we present a title compound, N,N-Bis(4-pyridylmethylene)benzene-1,4-diamine monohydrate, synthesized by a condensation reaction of pyridine-4-carboxaldehyde with benzene-1,4-diamine in refluxing eathnol.

The molecular structure of the title compound is shown in Fig.1. This compound contains one Schiff base ligand (I) and one water molecule. The central benzene ring of (I) makes the dihedral angles of 43.80 (14) $^{\circ}$ and 24.94 (16) $^{\circ}$, respectively, with two outer pyridine rings. The relevant dihedral angle between the pyridine rings is 68.59(0.15) $^{\circ}$.

The intermolecular O—H···N hydrogen bonds (Table 1) link the molecules of (I) and crystalline water molecules into linear chains extending in direction [20–1] (Fig. 2).

Experimental

Pyridine-4-carboxaldehyde (10 mmol, 1162 mg) in absolute ethanol (5 ml) was added dropwise to a absolute ethanol solution (15 ml) of benzene-1,4-diamine (5 mmol, 540.7 mg). The mixture was heated under reflux with stirring for 4 h and then filtered. The resulting clear pale yellow solution was diffused diethyl ether vapor at room temperature for two weeks, after which large yellow block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained.

Refinement

All H-atoms were positioned geometrically and refined using a riding model, with C—H (methylene) 0.93, C—H (aromatic) 0.93, O—H 0.85 Å (water), and with $U_{iso}(H) = 1.2U_{eq}(C, O)$.

Figures

Fig. 1. The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. A portion of the crystal packing of the title complex showing hydrogen bonds as dashed lines.

N,*N*'-Bis(4-pyridylmethylene)benzene-1,4-diamine monohydrate

Crystal data	
$C_{18}H_{16}N_4O$	Z = 2
$M_r = 304.35$	$F_{000} = 320$
Triclinic, PT	$D_{\rm x} = 1.264 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 8.4780 (12) Å	Cell parameters from 1119 reflections
<i>b</i> = 9.2472 (15) Å	$\theta = 2.4 - 27.0^{\circ}$
c = 11.291 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\alpha = 109.914 (3)^{\circ}$	T = 298 (2) K
$\beta = 94.884 \ (2)^{\circ}$	Block, yellow
$\gamma = 102.663 \ (3)^{\circ}$	$0.52 \times 0.34 \times 0.18 \text{ mm}$
V = 799.6 (2) Å ³	

Data collection

Siemens SMART CCD area-detector diffractometer	2718 independent reflections
Radiation source: fine-focus sealed tube	1439 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -4 \rightarrow 10$
$T_{\min} = 0.959, \ T_{\max} = 0.985$	$k = -10 \rightarrow 9$
4033 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Secor
Least-squares matrix: full	Hydro sites
$R[F^2 > 2\sigma(F^2)] = 0.066$	H-ato
$wR(F^2) = 0.231$	w =
<i>S</i> = 1.01	(Δ/σ)
2718 reflections	$\Delta \rho_{max}$
208 parameters	$\Delta \rho_{mir}$
Primary atom site location: structure-invariant direct methods	Extin

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring ites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1265P)^2 + 0.0065P]$ where $P = (F_o^2 + 2F_c^2)/3$ $\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.24 \text{ e} \text{ Å}^{-3}$

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	-0.1455 (3)	0.2126 (3)	1.0021 (2)	0.0530 (7)
N2	0.4300 (3)	0.2611 (3)	0.7853 (2)	0.0576 (8)
N3	-0.5784 (4)	0.2933 (4)	1.2834 (3)	0.0779 (10)
N4	0.8932 (3)	0.1819 (4)	0.5373 (3)	0.0672 (9)
01	0.8862 (3)	0.6807 (3)	0.6144 (2)	0.0868 (9)
H1A	0.7989	0.7064	0.6338	0.104*
H1B	0.9292	0.7337	0.5714	0.104*
C1	0.0031 (4)	0.2242 (4)	0.9535 (3)	0.0490 (8)
C2	0.1255 (4)	0.3655 (4)	0.9904 (3)	0.0545 (9)
H2	0.1141	0.4557	1.0545	0.065*
C3	0.2647 (4)	0.3757 (4)	0.9339 (3)	0.0570 (9)
Н3	0.3436	0.4725	0.9577	0.068*
C4	0.2851 (4)	0.2389 (4)	0.8409 (3)	0.0519 (8)
C5	0.1640 (4)	0.0977 (4)	0.8052 (3)	0.0610 (9)
H5	0.1769	0.0060	0.7437	0.073*
C6	0.0243 (4)	0.0905 (4)	0.8594 (3)	0.0578 (9)
H6	-0.0569	-0.0053	0.8325	0.069*
C7	-0.1438 (4)	0.2861 (4)	1.1190 (3)	0.0575 (9)
H7	-0.0436	0.3433	1.1726	0.069*
C8	-0.5868 (5)	0.2162 (5)	1.1575 (4)	0.0745 (11)
H8	-0.6894	0.1632	1.1064	0.089*
C9	-0.4478 (4)	0.2128 (4)	1.1010 (3)	0.0621 (10)
H9	-0.4587	0.1614	1.0131	0.075*
C10	-0.2960 (4)	0.2842 (4)	1.1736 (3)	0.0541 (9)
C11	-0.2877 (5)	0.3637 (5)	1.3026 (4)	0.0874 (14)
H11	-0.1865	0.4173	1.3558	0.105*
C12	-0.4301 (6)	0.3629 (5)	1.3517 (4)	0.0894 (14)
H12	-0.4213	0.4152	1.4394	0.107*
C13	0.4910 (4)	0.1473 (4)	0.7382 (3)	0.0587 (9)
H13	0.4452	0.0505	0.7457	0.070*
C14	0.8149 (5)	0.0460 (5)	0.5445 (4)	0.0709 (11)
H14	0.8495	-0.0444	0.5036	0.085*
C15	0.6844 (4)	0.0294 (4)	0.6091 (3)	0.0622 (9)

supplementary materials

H15	0.6332	-0.0700	0.6099	0.075*
C16	0.6313 (4)	0.1596 (4)	0.6715 (3)	0.0526 (8)
C17	0.7126 (4)	0.3042 (4)	0.6648 (3)	0.0648 (10)
H17	0.6804	0.3963	0.7050	0.078*
C18	0.8414 (4)	0.3094 (4)	0.5978 (4)	0.0712 (11)
H18	0.8949	0.4069	0.5948	0.085*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0433 (15)	0.0684 (17)	0.0521 (16)	0.0176 (13)	0.0251 (12)	0.0226 (13)
N2	0.0442 (16)	0.0711 (18)	0.0602 (16)	0.0175 (14)	0.0248 (13)	0.0225 (14)
N3	0.070 (2)	0.105 (3)	0.093 (2)	0.049 (2)	0.052 (2)	0.055 (2)
N4	0.0625 (19)	0.080 (2)	0.0762 (19)	0.0290 (17)	0.0417 (16)	0.0374 (16)
01	0.084 (2)	0.0951 (19)	0.109 (2)	0.0440 (16)	0.0549 (17)	0.0503 (16)
C1	0.0373 (17)	0.070 (2)	0.0441 (16)	0.0202 (16)	0.0166 (13)	0.0201 (15)
C2	0.0465 (19)	0.065 (2)	0.0546 (18)	0.0261 (16)	0.0204 (15)	0.0153 (16)
C3	0.0466 (19)	0.063 (2)	0.065 (2)	0.0182 (16)	0.0202 (16)	0.0231 (17)
C4	0.0421 (18)	0.072 (2)	0.0497 (17)	0.0206 (17)	0.0217 (15)	0.0261 (16)
C5	0.060 (2)	0.074 (2)	0.0481 (18)	0.0259 (18)	0.0277 (16)	0.0118 (16)
C6	0.0480 (19)	0.061 (2)	0.0530 (18)	0.0031 (15)	0.0212 (15)	0.0116 (16)
C7	0.0429 (19)	0.078 (2)	0.0535 (19)	0.0172 (16)	0.0183 (15)	0.0236 (17)
C8	0.053 (2)	0.110 (3)	0.082 (3)	0.026 (2)	0.0283 (19)	0.055 (2)
C9	0.052 (2)	0.086 (2)	0.057 (2)	0.0187 (19)	0.0235 (17)	0.0347 (18)
C10	0.050 (2)	0.076 (2)	0.0494 (18)	0.0296 (17)	0.0230 (15)	0.0271 (16)
C11	0.059 (2)	0.125 (3)	0.061 (2)	0.020 (2)	0.0273 (19)	0.012 (2)
C12	0.073 (3)	0.118 (4)	0.072 (3)	0.031 (3)	0.043 (2)	0.020 (2)
C13	0.055 (2)	0.072 (2)	0.063 (2)	0.0245 (18)	0.0289 (17)	0.0326 (17)
C14	0.075 (3)	0.090 (3)	0.080 (2)	0.052 (2)	0.045 (2)	0.045 (2)
C15	0.057 (2)	0.066 (2)	0.083 (2)	0.0244 (17)	0.0347 (19)	0.0407 (18)
C16	0.0442 (18)	0.074 (2)	0.0482 (17)	0.0225 (17)	0.0178 (15)	0.0269 (16)
C17	0.057 (2)	0.065 (2)	0.068 (2)	0.0190 (17)	0.0289 (18)	0.0125 (17)
C18	0.069 (2)	0.064 (2)	0.086 (3)	0.0170 (19)	0.045 (2)	0.0277 (19)

Geometric parameters (Å, °)

N1-C/ 1.260 (4) $C/-C10$ 1.	.476 (4)
N1—C1 1.413 (4) C7—H7 0.	.9300
N2—C13 1.249 (4) C8—C9 1.	.388 (4)
N2—C4 1.433 (4) C8—H8 0.	.9300
N3—C12 1.316 (5) C9—C10 1.	.357 (5)
N3—C8 1.342 (5) C9—H9 0.	.9300
N4—C14 1.319 (5) C10—C11 1.	.378 (5)
N4—C18 1.334 (4) C11—C12 1.	.370 (5)
O1—H1A 0.8500 C11—H11 0.	.9300
O1—H1B 0.8500 C12—H12 0.	.9300
C1—C2 1.385 (4) C13—C16 1.	.465 (4)
C1—C6 1.387 (4) C13—H13 0.	.9300
C2—C3 1.390 (4) C14—C15 1.	.385 (4)

С2—Н2	0.9300	C14—H14	0.9300
C3—C4	1.398 (4)	C15—C16	1.365 (4)
С3—Н3	0.9300	C15—H15	0.9300
C4—C5	1.381 (5)	C16—C17	1.393 (5)
C5—C6	1.377 (4)	C17—C18	1.382 (4)
С5—Н5	0.9300	C17—H17	0.9300
С6—Н6	0.9300	C18—H18	0.9300
C7—N1—C1	119.8 (3)	С10—С9—Н9	119.8
C13—N2—C4	120.5 (3)	С8—С9—Н9	119.8
C12—N3—C8	116.3 (3)	C9—C10—C11	117.2 (3)
C14—N4—C18	116.4 (3)	C9—C10—C7	122.9 (3)
H1A—O1—H1B	108.9	C11—C10—C7	119.8 (3)
C2—C1—C6	118.1 (3)	C12—C11—C10	119.2 (4)
C2C1N1	123.0 (3)	C12—C11—H11	120.4
C6—C1—N1	118.8 (3)	C10-C11-H11	120.4
C1—C2—C3	121.6 (3)	N3—C12—C11	124.5 (4)
С1—С2—Н2	119.2	N3—C12—H12	117.7
С3—С2—Н2	119.2	C11—C12—H12	117.7
C2—C3—C4	119.4 (3)	N2-C13-C16	122.9 (3)
С2—С3—Н3	120.3	N2—C13—H13	118.5
С4—С3—Н3	120.3	С16—С13—Н13	118.5
C5—C4—C3	119.0 (3)	N4—C14—C15	124.1 (3)
C5—C4—N2	125.3 (3)	N4—C14—H14	117.9
C3—C4—N2	115.6 (3)	C15—C14—H14	117.9
C6—C5—C4	121.0 (3)	C16-C15-C14	119.7 (3)
С6—С5—Н5	119.5	C16—C15—H15	120.1
С4—С5—Н5	119.5	C14—C15—H15	120.1
C5—C6—C1	120.9 (3)	C15—C16—C17	117.0 (3)
С5—С6—Н6	119.5	C15-C16-C13	121.7 (3)
С1—С6—Н6	119.5	C17—C16—C13	121.3 (3)
N1—C7—C10	122.0 (3)	C18—C17—C16	119.3 (3)
N1—C7—H7	119.0	C18—C17—H17	120.3
С10—С7—Н7	119.0	С16—С17—Н17	120.3
N3—C8—C9	122.3 (4)	N4—C18—C17	123.5 (3)
N3—C8—H8	118.8	N4—C18—H18	118.3
С9—С8—Н8	118.8	C17—C18—H18	118.3
C10—C9—C8	120.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1B···N4 ⁱ	0.85	2.20	3.005 (4)	158
O1—H1A…N3 ⁱⁱ	0.85	2.16	2.967 (4)	158
Symmetry codes: (i) $-x+2$, $-y+1$, $-z+1$; (ii) $-x$, $-y+1$, $-z+2$.				

Fig. 1

Fig. 2